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Abstract

The EN-HERITAGE project aims to define and prototype an integrated digital platform
for the management of virtual models of buildings belonging to the historic built heritage,
with a particular focus on slate roofing systems. The platform integrates IoT technologies
for environmental monitoring, architectural surveys carried out using laser scanning and
photogrammetry, HBIM models, and artificial intelligence algorithms for the analysis of
degradation phenomena. The pilot application was conducted on the Albergo dei Poveri
complex in Genoa, providing a replicable methodology for the planned conservation
of the historic built environment. Preliminary results highlight the effectiveness of the
platform in integrating heterogeneous data, providing stakeholders involved in the man-
agement of extensive architectural heritage with concrete support for decision-making
processes and greater efficiency in planning maintenance and restoration interventions on
historic buildings.

Keywords: cultural heritage; digital twin; IoT environmental monitoring; integrated survey
methodologies; AI technology

1. Introduction
1.1. Application Context

The research is set within the context of the conservation of the historic built heritage,
a field in which managing authorities are required to coordinate a wide range of buildings
of considerable complexity, often characterized by incomplete documentation and limited
knowledge of their conservation state. The difficulty in correlating environmental data, sur-
veys, and direct observations restricts the possibility of implementing an efficient planning
of maintenance and restoration activities based on updated and verifiable information.

In every restoration project, it is essential to assess the conservation conditions of
materials and construction elements: the identification of phenomena and their quantifi-
cation constitute a fundamental phase of the knowledge process. This analysis concerns
not only the definition of degradation forms but also the identification of the relationships
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between materials, environmental conditions, and external factors that influence their
origin and development.

Within this framework, particular attention is given to roof systems, which are espe-
cially exposed to external agents and often difficult to diagnose due to limited accessibility,
yet crucial in the overall conservation of a building.

1.2. Objectives of the “EN HERITAGE” Project

The EN-HERITAGE project was developed to create an integrated platform supporting
the management, diagnostic assessment, and conservation of Genoa’s historic built heritage.
It is based on a multidisciplinary approach aimed at collecting, processing, and sharing
architectural, energy, and environmental data.

The solution involves the use of interoperable digital tools for the monitoring and
diagnosis of the state of conservation, with the goal of supporting a more efficient and
predictive management of historic buildings.

One of the main objectives is the automatic mapping of degradation phenom-
ena affecting Genoa’s historic roofs, through a machine learning model trained on
multi-source datasets.

The decay maps produced by the system are interactive and can be validated by expert
operators via a dedicated interface, facilitating the continuous updating of diagnostic
information and the planning of scheduled conservation interventions by the authorities
responsible for heritage protection.

1.3. State of the Art
1.3.1. Application Scenario

The conservation of historical architectural heritage is strongly influenced by atmo-
spheric agents and pollutants, which contribute to the onset and progression of degradation
phenomena. To address these critical issues, several European and national initiatives pro-
mote the adoption of advanced digital technologies for monitoring, documenting, and
preserving the built heritage. Among these, the European Cultural Heritage Cloud [1] and
the National Plan for the Digitization of Cultural Heritage [2] represent long-term strategies
aimed at promoting data sharing and the adoption of interoperable digital solutions in
the management of historical architectural heritage. Another indicator of the strategic
importance attached to the preservation of cultural heritage in Europe is the European
Heritage Days [3], which, through their annual program, encourage dialogue between
institutions and stakeholders on the social, political and economic challenges facing the
sector, while raising awareness among policymakers and citizens of the need to protect it.
At the local level, the issue of conservation has also gained importance. In the context of
the city of Genoa, the preservation of the historic built heritage is supported by several
institutional initiatives that have introduced digital tools and environmental monitoring
systems. The Management Plan of the UNESCO site “Le Strade Nuove e il Sistema dei Palazzi
dei Rolli” defines, for instance, operational strategies for conservation and for the control
of risk factors affecting historic buildings [4]. As part of the Genoa 2050 Action Plan, the
Municipality of Genoa has developed strategies in line with the Sustainable Development
Goals, focusing on protecting the city’s UNESCO heritage from environmental impacts and
climate change. The UNESCO Sentinel initiative involves the development of an integrated
monitoring system based on satellite mapping, proximity sensors and an interoperable
dashboard (BIG-EYE objective, pp. 22–25) [5], aimed at assessing the effects of air pollution
and climate change on the city’s historic fabric.

In addition, the urban policies outlined in the Genoa 2050 Action Plan [5] include
measures aimed at the digitalization of heritage management, the use of sensors and
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integrated platforms, and the enhancement of the climate resilience of the historic built
fabric. This set of initiatives demonstrates how the city is already engaged in activities
consistent with the objectives of the EN-HERITAGE project, providing an advanced local
context for the development of integrated methodologies for diagnosis and conservation.

1.3.2. In Situ and Remote Environmental Monitoring Technologies

In this field of application, the study and analysis of atmospheric pollutants, in relation
to their presence and concentration, must be carried out with a predictive approach, as
these factors significantly influence the assessment of a building’s state of conservation.

Monitoring the most impactful environmental variables is essential to verify the stabil-
ity of parameters within safe thresholds, with the aim of preventing potentially harmful
levels for materials and, consequently, avoiding the onset or progression of degradation
phenomena. Atmospheric pollution monitoring is typically performed through fixed moni-
toring stations equipped with automatic analyzers for the continuous measurement of the
main pollutant species and associated meteorological parameters [6].

In support of traditional methods, recent years have seen the introduction of IoT (Inter-
net of Things) systems, consisting of multiparametric stations for measuring meteorological
variables (temperature and relative humidity) and the concentration of major atmospheric
pollutants (SO, SO2, NO, NO2, O3, PM2.5, and PM10) (Table 1).

Table 1. Overview of the IoT technologies and the corresponding IoT technologies.

IoT Technology Environmental Parameters

Bettair static node CO, CO2, H2S, NO2, NO, O3, PM10, PM1, PM2.5, SO2, pressure, relative humidity, temperature
Smart Rainfall System Rainfall intensity

These devices, characterized by compact dimensions and autonomous operation,
enable remote access to configuration, diagnostics, calibration, and automatic data export
through Internet connectivity and the use of cellular networks for data transmission.

Data processing is carried out using artificial intelligence algorithms, particularly
machine learning techniques, which learn to recognize recurring patterns during the
training phase [7].

Remote monitoring through satellite platforms such as Copernicus and Landsat pro-
vides extensive territorial coverage for environmental parameters such as surface tempera-
ture, atmospheric humidity, and pollutant concentrations.

Satellite data offer variable spatial resolution and regular temporal frequency, enabling
multiscale analyses ranging from regional contexts to local detail.

The integration of in situ data, satellite observations, and climate reanalysis datasets
represents the most effective approach for a comprehensive understanding of degradation
processes, supporting historical analyses, the validation of predictive models, and the
planning of conservation interventions based on quantitative evidence [8].

1.3.3. Existing Technologies for Architectural Survey and Thermographic Inference

The survey phase represents a fundamental step in the process of acquiring architec-
tural space, during which, in addition to the recording of geometric data, the objectives of
the activity, the representation scales, the required level of detail and accuracy, as well as
the type and configuration of the instruments to be employed, are defined.

The use of advanced surveying technologies for digital data acquisition has introduced
new methodologies and operational protocols for the representation of the built environ-
ment. It is essential to balance data accuracy with the complexity of data management,
according to the intended purpose and processing requirements. Several studies have
defined different levels of survey accuracy based on the specific applications of the data,
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such as analyses of the building’s state of conservation, support for structural assessments,
monitoring activities, and energy evaluations [9].

The two main technologies for three-dimensional metric surveying today are Terres-
trial Laser Scanning (TLS) and Structure from Motion (SfM) photogrammetry.

TLS, based on the measurement of the laser beam’s time of flight, generates high-
density point clouds with millimetric accuracy, enabling a detailed representation even of
complex geometries. The acquired points include attributes such as intensity, color, and
reflectance, which are useful for geometric, material, and monitoring analyses.

Derived techniques, such as airborne LiDAR, extend data acquisition to a territorial
scale, providing lower resolution but greater spatial coverage in reduced time, making
them ideal for morphometric analyses and studies on terrain morphology.

In parallel, SfM-MVS photogrammetry, based on the automatic correlation of images
acquired by UAVs, enables the generation of dense and georeferenced 3D models with high
spatial resolution (GSD—Ground Sampling Distance).

The integration of drones into architectural surveying has made it possible to achieve
rapid documentation with high operational flexibility, even in complex or difficult-to-access
environments. Some activities involve the planning of flight paths and the definition of
technical parameters according to the survey objectives, ensuring consistency between the
acquisition methods and the required level of accuracy [10,11].

In recent years, there has been a growing awareness of the importance of integrating
photogrammetric (image-based) and laser scanning (range-based) technologies in the
processes of analysis and understanding of cultural heritage, both for their combined
use [12] and for a critical comparison of their respective results [13].

An additional contribution is provided by thermographic surveys, which add a diag-
nostic layer based on the thermal response of materials, useful for detecting detachments,
moisture, or structural anomalies not visible under natural light.

1.3.4. Analysis of Material Degradation Processes

Attention to the genesis and development of degradation phenomena emerged as
one of the consequences of the changing attitude towards historic architecture that took
shape between the eighteenth and nineteenth centuries. Previously, interventions on
historic buildings generally involved the replacement of deteriorated elements or the
demolition and reconstruction of compromised parts. With the growing awareness of the
need to preserve the monument in its material integrity and to ensure its transmission to
future generations, the necessity arose to investigate the factors of deterioration in order
to strengthen both preventive and protective measures, aimed at containing or at least
slowing down the processes of decay.

The study of the genesis and development of degradation phenomena has been struc-
tured into different but interrelated fields: the diagnostic field, which developed from the
1930s onwards with the introduction of scientific methodologies applied to material conser-
vation and the progressive rationalization and parametrization of the causes and effects of
decay [14]; the physico-chemical field, focused on analyzing the processes of interaction
between constituent materials and their environment [15]; the biological-chemical field,
dedicated to the identification and study of biodeteriogenic agents responsible for biotic
alteration processes [16]; and finally the regulatory field, aimed at defining shared termi-
nologies and standardized procedures for the description and assessment of degradation
phenomena [17,18].

These fields are today complemented by more recent lines of research, including the
application of non-invasive diagnostic techniques and advanced sensor-based monitoring
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systems, designed for real-time collection of microclimatic data and for the predictive
evaluation of the conservation state of materials [19].

1.3.5. Existing Technologies for the Integration and Visualization of Architectural Data and
Building Degradation Information

In recent years, the representation of architectural information, together with data
related to the conservation state of buildings, has evolved through the introduction of new
digital protocols and methodologies. Building Information Modeling (BIM) has introduced
an innovative approach to data management, enabling the association of semantic informa-
tion with building components and allowing information models to be queried, updated,
and made interoperable [20,21]. However, the management of heterogeneous data, the
continuous updating of information, and the representation of complex geometries have
highlighted the limitations of HBIM (Heritage Building Information Modeling), particularly
regarding the integrated management of the information model.

1.3.6. IOT and AI Systems

The technological evolution in the field of cultural heritage conservation has led to
the synergistic integration of IoT systems and artificial intelligence for the monitoring and
predictive management of degradation phenomena. Smart IoT sensors are advanced de-
vices capable of detecting environmental parameters with high precision and transmitting
data in real time to centralized analytical platforms. They are characterized by compact
dimensions, autonomous operation, and connectivity through cellular networks that enable
remote access. When applied to data acquired through surveying technologies, artificial
intelligence can transform large volumes of information into interpretable models using
machine learning algorithms. Convolutional neural networks (CNNs) enable the automatic
segmentation of surfaces, distinguishing between different forms of surface decay and
structural anomalies. Gradient boosting algorithms (such as XGBoost and CatBoost) effec-
tively process structured tabular data, capturing complex nonlinear relationships between
environmental variables and degradation phenomena [22].

Temporal comparative analysis based on machine learning makes it possible to trace
the origin and evolution of degradation phenomena by comparing models acquired at
different time intervals. This approach supports predictive simulations of future effects
and the planning of proactive interventions grounded in analytical data [23].

2. Materials and Methods
The experimental methodology of the EN-HERITAGE project, applied to a real case

study, is aimed at validating a digital system capable of integrating surveying, environmen-
tal monitoring, and information modeling and management processes.

The adopted approach allows for the analysis and correlation of heterogeneous
datasets, supporting decision-making processes oriented toward the planned conserva-
tion of historic architectural heritage. In particular, the experimental activity focuses on
roof structures, an area where degradation phenomena are typically more pronounced
due to exposure to atmospheric agents, limited accessibility, and the complexity of
maintenance operations.

2.1. The Case Study

A comprehensive analysis of potential case studies within the UNESCO sites of Genoa
led to the selection of the Albergo dei Poveri complex for the experimental phase of the
research. The choice is motivated by the presence of slate-covered roofs, which show a
variety of surface degradation phenomena, accentuated by direct exposure to atmospheric
agents. In addition, the site offers favorable conditions for the integrated execution of aerial
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surveys with drones with ground support based on laser scanner technology, used for
georeferencing, and aligning the acquired data.

The complex, founded in 1656 by Emanuele Brignole as a welfare institution, has a
square layout with a central Greek cross-shaped core, occupied by a church, two oratories
and an infirmary, which divides the central space into four independent courts (Figure 1).
After its original function ceased in the 20th century, the University of Genoa obtained a
concession from the Brignole Foundation and in 2003 began its restoration and adaptation
into a university campus. However, many parts that have not yet been restored show
serious signs of deterioration that require targeted conservation work. Specifically, the
slate roofing, currently in a condition of poor conservation, shows localized gaps, spalling
and exfoliation of the slates, and widespread alterations due to coherent and incoherent
deposits and biological patina.

 
(a) (b) 

Figure 1. Albergo dei Poveri complex (Genoa): (a) historic floor plan and axonometric by an anonymous
author, 1835; (b) detailed photo of the roofing system.

2.2. Environmental Monitoring Phase

Environmental monitoring is one of the central components of the EN-HERITAGE
project, as it provides the knowledge base for analyzing the processes of interaction between
materials and the environment. The activity focused on the collection, processing and corre-
lation of microclimatic parameters and atmospheric pollutant concentrations (black carbon,
SO2, NO2, O3), through the integration of in situ measurements and remote observations.

The measurement of Iic Black Carbon concentration at the monitoring site was per-
formed using the Dadolab Giano BC1 [24]. It is a sequential PMx sampler integrated with
an optical module that continuously monitors Black Carbon (BC) concentration directly
on the filter during sampling. The sampling sequence alternates blank and exposed filters
(up to 21 positions) while a fixed-wavelength light source (λ = 635 nm) illuminates the
newly exposed filter surface upstream of the deposition zone. A photodiode measures
the light back-scattered or reflected at a fixed angle (≈125◦ relative to the incident beam)
from the particle-loaded filter. The raw voltage signal is converted via a calibration curve
(polynomial in the form ABS = A·RFN2 + B·RFN) linking the reflectance (RFN) to ab-
sorbance (ABS), through a patented technology (co-owned by Dadolab Srl and PM_TEN
Srl). Once absorbance is known, the mass concentration of BC is calculated by applying
a site-specific mass absorption coefficient (MAC) to the layer of particles on the filter;
i.e., BC = ABS × MAC. Importantly, the optical module is placed “on the fly” in the sampler
inlet so that the aerosol flow and filter loading remain unchanged; thus, the filter remains
available for subsequent gravimetric PM analysis or thermo-optical EC/OC characteri-
zation. This procedure offered real-time (or near-real-time) data on BC during sampling,
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integrated in a PM sequential sampler, enabling simultaneous PM and BC monitoring using
a single instrument.

For air pollutants—such as nitrogen oxides (NOx), sulphur oxides (SOx), carbon
dioxide (CO2) and particulate matter (PM2.5 and PM10)—reference is made to remote
monitoring techniques such as the Copernicus Atmosphere Monitoring Service (CAMS),
which provides reanalysis datasets capable of estimating average annual concentrations,
which are essential for assessing air quality and monitoring emissions on a territorial scale.
The project also foresees the integration of advanced environmental monitoring solutions
based on IoT technologies and Earth Observation satellite systems (Figure 2). Among
the main instruments employed are the Smart Rainfall System (SRS) [25], which enables
high-resolution urban-scale rainfall mapping through networks of opportunistic sensors
using satellite microwave link (SML) technology, and AURA, a modular network of multi-
parametric monitoring units for the continuous measurement of meteorological parameters
and pollutant concentrations in both solid and gaseous phases of the atmosphere.

 

Figure 2. Environmental monitoring instrument (IoT air quality monitoring) installed inside the
experimental case study site, the Albergo dei Poveri complex (Genoa).

As regards the data developed through remote monitoring, this strategy was de-
veloped by integrating multi-channel satellite data with advanced machine learning al-
gorithms for predicting black carbon concentration. The methodology is based on two
complementary methodologies. The first methodology uses gradient boosting algorithms
(CatBoost) to solve a regression task aimed at estimating black carbon concentrations
from structured tabular data from sensors installed in situ, as seen previously. These
decision tree-based ensemble models can capture complex non-linear relationships be-
tween environmental variables such as particulate matter concentrations, temperature
and relative humidity, effectively handling heterogeneous features and missing values.
Once trained on data collected between 2013 and 2023, the model was applied to multi-
channel satellite images from programs such as Copernicus Sentinel-2 and ERA5, where
each channel represents a specific contextual parameter, allowing large-scale inferences
with daily updates. The second methodology integrated Bayesian probabilistic models
with Physics-Informed Neural Networks (PINN), combining experimental data from at-
mospheric chambers with satellite observations. The Bayesian model, calibrated using
probabilistic programming techniques, provided posterior probability distributions that
quantify the likelihood associated with Black Carbon estimates. This physical knowledge
was incorporated as a constraint in the PINN loss function, allowing accurate predictions
even with limited datasets.
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The data collected by IoT sensors and satellites for all monitored pollutants are harmo-
nized into a single information infrastructure, with the aim of correlating them with the
observed degradation phenomena (Figure 2).

2.3. Methodology for the Recognition and Mapping of Degradation Phenomena and
HBIM Representation
2.3.1. Architectural Survey Phase

The surveying phase was aimed at acquiring the geometry of the roof coverings of the
complex through a series of surveying campaigns, while simultaneously identifying the
most suitable methodology to ensure the accuracy and consistency of the acquired data.
The goal of this phase was the production of high-resolution orthophotos, to be used as a
basis for the subsequent architectural modeling and automated mapping of degradation
phenomena. Specifically, the survey was aimed at acquiring the geometric configuration
through aerial photogrammetric campaigns (SfM) using drones and, in specific cases,
through Laser Scanning technology (tLS).

A preliminary phase of planning for the aerial survey with drone was carried out, inte-
grating remote analyses (cartographic data, archival photographs) and on-site inspections
to define the operational parameters, acquisition perimeters, obstacles, altitudes, and flight
trajectories (Figure 3).

Figure 3. Preliminary Survey Plan for UAV Roof Coverage—Albergo dei Poveri complex (Genoa).

The mission was then designed within the cloud-based platform DJI FlightHub 2,
specifically developed for the advanced management of UAV operations.

Subsequently, prior to the operational survey phase, the environmental parameters
were recorded using a dedicated data sheet and integrated with the DJI Mavic 3T logs to
verify operational stability (Figure 4).

 

Figure 4. Screenshot from DJI FlightHub 2 showing the flight-plan for one of the roof coverings of
the Albergo dei Poveri complex (Genoa).
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The operational activity involved automatic flight missions with shooting distances
ranging between 8 and 5 m, to achieve a Ground Sample Distance (GSD) between 0.5
and 1 cm/pixel, a value considered suitable for the identification of micro-degradation
phenomena such as cracks, flaking, and exfoliation. The test flights showed that a 5 m
altitude ensures the best definition and data homogeneity, while a 6.3 m distance represents
the optimal compromise for achieving uniform and manageable coverage across the entire
roof surface (Figure 5).

 

Figure 5. Visualization of the resolution of photographic surveys at different flight altitudes.

Photographic acquisitions were performed using both nadiral and oblique (45◦) angles
to improve three-dimensional reconstruction and surface readability, ensuring high image
overlap (70–80%) and uniform diffuse lighting, while avoiding midday hours to minimize
shadows and reflections. Where necessary, manual flight operations were carried out to
capture details and critical areas. The RTK georeferencing of the model was carried out
using a Trimble R10 GNSS station, ensuring centimeter-level accuracy.

In selected cases, a Laser Scanner technology (tLS) was employed to provide metric
control, higher local point density, and verification of potential deformations or occlusions
(Figure 6).

 

Figure 6. Visualization of the point cloud processed through tLS within Autodesk ReCap Pro
2025 software.

Following the operational survey phase, the point cloud was processed in Agisoft
Metashape, performing Structure-from-Motion (SfM) alignment using reference markers
and applying selective masking to manually exclude non-relevant portions of the images
prior to point cloud generation.

Subsequent steps included dense cloud generation, mesh creation, and texturing,
leading to the production of high-resolution RGB and infrared (IR) orthomosaics.

The thermograms were pre-processed in DJI Thermal Analysis Tool—standardizing
scale, range, and contrast—and subsequently projected onto the same mesh to ensure
spatial coherence between datasets.

For integrated visualization, the georeferenced orthomosaics were overlaid in Auto-
CAD 2022, converting the RGB layer to grayscale and adjusting the IR image transparency.
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The final outputs intended for artificial intelligence training were exported in JPEG
format, while those used for architectural modeling in HBIM environments were exported
in Geo-TIFF format (Figure 7).

 
(a) (b) 

Figure 7. Albergo dei Poveri complex: visualization of the RGB (a) and thermal (IR) (b) orthomosaics
of the roofing system.

2.3.2. AI Technology—Training of the Algorithm for the Automatic Mapping of
Degradation Phenomena

Starting from the orthophotos produced during the survey phase, artificial intelligence
was applied to automatically classify the degradation phenomena on the roofs under study,
using a machine learning process. The experiment was divided into two phases: a training
phase, based on a series of pitched slate roofs for learning the algorithm, and a validation
phase, in which artificial intelligence automatically recognized signs of deterioration.

The labeling process was carried out using CVAT (Computer Vision Annotation Tool),
an open-source platform for creating annotated datasets from images. The high resolution
of the orthophotos, essential for the identification of degradation phenomena, led to the
exclusion of other platforms such as Label Studio and Labelbox, which were unable to
handle high-resolution imagery.

The training process involved the manual annotation of degradation phenomena,
testing two approaches: object detection and semantic segmentation. The former identifies
and localizes distinct objects within an image but does not provide the level of detail
required for in-depth analyses, whereas the latter assigns a label to each pixel, generating a
detailed map that precisely distinguishes the different elements within the scene. The latter
approach proved more effective for stone surfaces, as it enables a more accurate delineation
of both architectural elements and degradation phenomena.

Specifically, a customized U-Net architecture was implemented for multi-class seg-
mentation, adapted to handle inputs with 3 channels (RGB) or 4 channels (RGB + NIR) and
a variable number of output classes. The implementation was developed using PyTorch
and PyTorch Lightning (2.5.0 version), ensuring modularity and scalability. Given the high
resolution of the images, a tile-based approach with random extraction during training was
adopted to increase data variability and reduce the risk of overfitting.

Several data augmentation techniques were applied, including random flip, rota-
tions in multiples of 90◦, small zooms, and additional rotations to simulate distortions
caused by variations in acquisition distance. During training, learning rate schedul-
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ing, early stopping, and checkpointing were implemented to optimize convergence and
computational efficiency.

For the validation (or inference) phase, an aligned tiling strategy with overlaps was
employed to reduce the effects of boundary artifacts. The predictions from individual
tiles were subsequently merged to generate a complete segmentation map. The process
was further enhanced through Test Time Augmentation (TTA), which aggregates multiple
predictions to obtain final estimates that are as robust and reliable as possible.

2.3.3. HBIM Model

In this phase, the objective was the development of a digital model serving as the
architectural-operational foundation for automatic mapping and information management
activities, without delving into the geometric accuracy of individual components of the
building envelope. The main goal was to define an essential geometric and informational
content, comparable to that of a feasibility study, in which the principal elements of the
envelope were modeled.

The model, conceived as an information container for degradation conditions, em-
ployed architectural elements as hosts for the insertion of degradation instances, repre-
sented as parametric families.

Specifically, the model was structured according to a Level of Development (LOD) B, as
defined by UNI 11337-4, characterized by a low geometric detail, to prioritize informational
use and reduce time-consuming modeling activities.

Simplified representations of walls, floors, roofs, terraces, and openings were included.
The insertion of geometric and informational data was automated through scripts

applied to the results of the AI training phase, followed by technical validation.
Each degradation instance was described through a Property Set containing numeric

ID, phenomenon description, damage level, associated architectural element, affected
material, and geometric dimensions such as area or linear extent. The temporal dimension
of the data was managed through the parameters T_Survey_T0/T1 and T_Validation_T0/T1
(Figure 8).

  
(a) (b) 

Figure 8. Albergo dei Poveri complex (Genoa): (a) visualization of the HBIM model within the Autodesk
Revit environment; (b) detail of the parameters entered for the modeled roofing system.

The system was georeferenced in WGS84 and federated across three integration levels,
enabling data querying, traceability, and versioning.

Interoperability was ensured through export in open-BIM (IFC) format and subse-
quent publication on an open-source platform specifically developed for the informative
management of the asset, as described in the following sections. The workflow adopted for
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the modeling of degradation phenomena and the subsequent export phase of the digital
model is illustrated in Figure 9.

Figure 9. Workflow for the modeling of degradation phenomena and the export phase of the
digital model.

2.4. A Management Platform for Diagnostics in Historic Building Conservation Through Digital
Twin Technology

The EN-HERITAGE platform serves as a digital environment capable of integrating the
collection, management, and analysis of data derived from all previously described phases.
The system was developed to provide heritage managers with an initial operational tool for
diagnosis, planning, and conservation management, following the Digital Twin paradigm.

The platform architecture is structured across three functional layers—data, pro-
cessing, and presentation. The first layer manages the acquisition and organization of
multisource data, collected from 3D surveys, IoT sensors, and satellite observations, sup-
porting visualization and analysis at the urban scale. The second layer is dedicated to
the processing, validation, and correlation of datasets, leveraging artificial intelligence
algorithms for the automatic detection and classification of degradation phenomena at
the building scale. The third layer, oriented toward presentation, provides visualization
and interaction tools through a three-dimensional WebGIS interface implemented using
the Cesium Ion platform [26], complemented by an integrated web-based BIM viewer for
consulting the developed HBIM model (Figure 10).

Whenever new roof surveys and updated orthophotos are produced, the platform
architecture is designed to automatically generate a new segmentation and classification
of degradation phenomena. The resulting instances are integrated into the HBIM model
and exported to the web platform as a new temporal state representing the condition of the
roofing systems. Through the Cesium-based interface, users can inspect the automatically
generated maps, validate or correct the assigned classes, and edit the associated properties
(e.g., damage level, extent, material, and temporal references). This workflow combines
an automated assessment of conservation conditions with an expert-driven refinement
process, ensuring that the digital representation dynamically evolves as new observations
and surveys become available.

The system enables multilevel visualization, from the urban to the architectural scale,
integrating real-time analysis, querying, and updating functionalities to support monitoring
and preventive maintenance. The management of environmental, thermal, and geometric
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datasets is handled by a centralized data lake, ensuring data consistency, traceability, and
integrity. Fully interoperable with openBIM (IFC) and GIS standards, the platform provides
a shared information environment that integrates geometric surveys, diagnostic data, envi-
ronmental measurements, and historical documentation. Thus, EN-HERITAGE establishes
itself as a collaborative environment where heritage authorities, professionals, and public
administrations can share information and coordinate conservation strategies effectively.

 
(a) 

 
(b) 

 
(c) 

Figure 10. EN HERITAGE platform: (a) building selection interface; (b) component-level inspection;
(c) attribute-based filtering of degradation phenomena.
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3. Results
3.1. Results of the Environmental Monitoring Phase

Environmental monitoring activities provided a structured dataset useful for the
characterization of the atmospheric context and the distribution of pollutants within the
reference area. The experimental phase enabled the collection and integration of a signifi-
cant amount of environmental data from in situ sensors, opportunistic IoT networks, and
satellite observations, consistent with the integrated model proposed by EN-HERITAGE
for environmental data acquisition and management; however, the spatial and temporal
resolution of these data, generally referring to broader scales than those of the analyzed
degradation phenomena, did not always support a point-specific and direct correlation
with the processes observed at the local level.

3.2. Results of Degradation-Phenomena Mapping and HBIM Representation Methodology
3.2.1. Results of the Architectural Survey Phase

The survey campaign produced an integrated set of metric, photogrammetric, and
thermographic results aimed at documenting and analyzing the roofs of the complex. The
processing of data acquired through aerial drone survey (SfM) and terrestrial laser scanning
technology (tLS) enabled the generation of high-resolution RGB and IR orthophotos (GSD
0.5–1 cm/pixel), georeferenced point clouds, and textured 3D models, ensuring accurate
and morphologically consistent restitution.

The integration of these different datasets allowed the production of analytical out-
puts for the automated mapping of degradation and the assessment of the conservation
condition of materials.

The final products, exported in interoperable formats (JPEG and GeoTIFF), provided a
solid foundation for subsequent phases of architectural modeling in the HBIM environment
and for the training of artificial intelligence algorithms dedicated to the recognition of
degradation phenomena.

The entire process also enabled the definition of a replicable operational protocol,
ensuring traceability, accuracy, and consistency between survey, processing, and represen-
tation, within a framework of integrated and digital management of the built heritage.

3.2.2. Results of AI Technology—Training of the Algorithm for the Automatic Mapping of
Degradation Phenomena

The validation phase of the deep learning algorithm demonstrated the effectiveness of
the custom UNet-based approach for multiclass semantic segmentation of degradation phe-
nomena on the roof surfaces of historic buildings. The model, developed using the PyTorch
and PyTorch Lightning frameworks, was trained on a manually annotated dataset created
in CVAT, consisting of high-resolution RGB orthophotos acquired during photogrammetric
survey campaigns.

The implemented neural architecture showed remarkable operational flexibility, al-
lowing dynamic configuration of critical parameters such as the number of input channels
(supporting both 3-channel RGB and 4-channel near-infrared configurations), the variable
number of output classes, and the ability to operate in both multiclass and multilabel modes,
since some categories are mutually exclusive while others may coexist. The optimized
handling of high-resolution imagery through a tile-based approach enabled efficient pro-
cessing of large-scale orthomosaics while maintaining high precision in the morphological
delineation of degraded areas.

The implementation of Test Time Augmentation (TTA) within the inference pipeline
further enhanced predictive robustness. The aggregation of multiple predictions obtained
through controlled transformations and overlapping tiling minimized edge artifacts, en-
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suring continuity and consistency in the final segmentation map. Optimization strate-
gies such as learning rate scheduling, early stopping, and periodic checkpointing en-
sured efficient model convergence while maintaining a balance between accuracy and
computational sustainability.

Since the classification model was designed to operate in a mutually exclusive multi-
class mode, it was not possible to assign multiple degradation categories to the same pixel
simultaneously. Consequently, during the training phase, only non-coexisting phenomena—
such as cracks, fissures, and exfoliation—were mapped, while during the validation phase,
pixel-wise semantic segmentation enabled the accurate identification of critical phenomena
such as exfoliation and fractures of slate tiles. The data augmentation techniques imple-
mented during training, including geometric transformations, significantly improved the
model’s generalization ability and reduced the risk of overfitting.

The results for the model validation (both with and without TTA) are presented below
(Tables 2 and 3).

Table 2. Model results in standard inference (No TTA).

NO TTA—No Test Time Augmentation

Accuracy 0.9482
F1 0.4890

Normalized Confusion Matrix 0.9483–0.4312
0.0517–0.5688

Table 3. Model results in inference with Test-Time Augmentation (TTA).

TTA—Test Time Augmentation

Accuracy 0.9637
F1 0.4944

Normalized Confusion Matrix 0.9638–0.3804
0.0362–0.6196

These results were obtained with the following training set:

• Number of images: 7;
• Average number of pixels for image: 100 million (e.g., 10.000 × 10.000);
• Tile size: 256 pixel;
• Number of tiles in the set: 10.936 randomly re-generated at each epoch;
• Positive pixel incidence: 5/10.000.

And validation set:

• Number of images: 2;
• Average number of pixels for image: 125 million;
• Tile size: 256 pixel;
• Number of tiles in the set: 3.874 randomly generated (fixed for all the training process);
• Positive pixel incidence: 5/10.000.

3.2.3. Results HBIM Model

The methodology produced a coherent degradation database, where each instance is
identifiable and traceable over time (T0/T1), with a clear separation between survey data,
automated detection output, and expert validation.

The normalization of Property Sets enables thematic queries by phenomenon, material,
damage level, and building element. The adoption of a Level of Detail (LOD) B accelerated
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updates, reduced geometric conflicts, and ensured the sustainability of the process in terms
of maintenance.

The use of DirectShape minimized manual modeling on large volumes, while federa-
tion with the textured mesh improved readability and control within the real-world context.

The export in IFC/OBJ formats and subsequent publication on the Cesium platform
enabled web-based visualization, interdisciplinary data sharing, and temporal comparison.

As a result, the workflow supports more robust prioritization of interventions, greater
process transparency, and the reusability of the methodology for future survey campaigns.

3.3. Results of Platform for Diagnostic in the Conservation and Use of Historic Buildings Through
Digital Twin Technology

The development of the EN-HERITAGE platform represented one of the main out-
comes of the project, leading to the implementation of an integrated system for the man-
agement of environmental architectural information related to the case study.

The platform enabled the correlation of data acquired from monitoring and surveying
systems with the geometric and semantic models of the building, providing users with an
interactive and dynamic environment for data consultation and analysis.

Specifically, users were able to access environmental measurements, visualize architec-
tural surveys, and interact with the mapped degradation phenomena on building surfaces,
performing comparisons between two different timeframes and modifying the properties
of each individual degradation instance represented within the model (Figure 11).

  
(a) (b) 

Figure 11. (a) Visualization of degradation areas on the surface of a case-study roof within the Cesium
platform; (b) pop-up panel displaying the related properties, which can be viewed and edited by the
user for a selected area (highlighted in green).

The implementation of these functionalities constitutes a prototype of a dynamic
platform, supported by the automated real-time ingestion of environmental data streams
and the synchronized updating of building exposure dashboards. Environmental pa-
rameters collected by Air Quality (AQ) monitoring nodes are updated at 5 min inter-
vals, while rainfall measurements acquired through the Smart Rainfall System (SRS)
are refreshed at 1 min intervals, ensuring a continuously updated representation of the
building’s environmental context.
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4. Discussion
4.1. Discussion Results of the Enviromental Monitoring Phase

From a methodological perspective, the experimental results indicate that the inte-
gration of IoT technologies and in situ observation data represents a viable strategy for
supporting a dynamic and up-to-date characterization of environmental conditions relevant
to material degradation processes. The use of smart IoT sensors enabled the acquisition
of high temporal resolution data, providing a detailed view of variations in pollutant
concentrations in proximity to the monitored buildings.

At the same time, the integration of satellite data with direct measurements expanded
the observation scale, allowing the identification of territorial areas characterized by higher
exposure levels and supporting the definition of geographically based preventive strategies.

During the monitoring campaigns focused on Black Carbon (BC), the measurements
produced detailed temporal profiles, revealing distinct daily cycles. The results show that
concentrations were strongly influenced by vehicular traffic and residential heating, the
main sources of carbonaceous aerosols in urban environments. The peak values recorded
were consistent with those typically observed in the city of Genoa, indicating that the
monitored area is exposed to pollutant levels comparable to those of the surrounding urban
context (Figure 12) (Table 4).

 
Figure 12. Results of the monitoring activities of Black Carbon (BC) concentration in the Albergo dei
Poveri complex (Genoa).

Table 4. Summary of Black Carbon monitoring campaign results.

Site Name Maximum Observed Value (ug/m3) Average Observed Value (ug/m3)

Albergo dei Poveri complex 2.10 0.40

Since no reliable low-cost technology is available for the monitoring of Black Car-
bon and it has not been standardized as a continuous process, data acquisition could be
performed only during limited, temporary measurement campaigns, which limits the con-
tinuity of observation. In addition, the data obtained through satellite-based inference still
have insufficient resolution for detailed assessments at local or zonal scales. Within these
constraints, the monitoring activities confirmed the replicability of the operational model
in different urban contexts, supported by its relatively low costs, scalability, and high level
of automation in data acquisition and management processes. At the same time, the data
collection and harmonization infrastructure developed within the EN-HERITAGE project
proved effective in spatially densifying environmental information and in constructing a
coherent, multi-scale framework of the main atmospheric variables.
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Overall, these results provide a consistent basis for the future development of pre-
dictive models aimed at exploring correlations between environmental parameters and
degradation phenomena, in line with the evolutionary objectives of the system.

The interpretation of environmental data becomes particularly relevant when analyzed
in relation to material degradation processes, although it is not always straightforward due
to the different spatial and temporal scales characterizing the available datasets. Within the
research activity, specific descriptive sheets were developed to characterize the mechanisms
and processes associated with the different types of degradation potentially affecting
slate roofing systems. This information was systematically organized to explore possible
correspondences between the environmental data recorded by the in situ IoT monitoring
network and the degradation processes observed on the building surfaces (Figure 13).

 

Figure 13. Visualization of environmental factors potentially involved in the initiation and progression
of degradation phenomena.

Several forms of degradation, such as fracturing and flaking, appear to be primarily
influenced by thermal and hygrometric dynamics. These phenomena are generally asso-
ciated with physical actions developing at material discontinuities or weak zones, where
micro-infiltration, moisture migration, and freeze–thaw cycles contribute to the initiation
and evolution of degradation processes. In this context, precipitation data acquired through
the Smart Rainfall System (1 min temporal resolution) and relative humidity (Figure 14)
and temperature profiles (Figure 15) measured by the AQ nodes (5 min temporal resolution)
provide indications of environmental conditions potentially favorable to such mechanisms.

Figure 14. Results of the monitoring activities of relative humidity in the Albergo dei Poveri
complex (Genoa).
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Figure 15. Results of the monitoring activities of temperature in the Albergo dei Poveri
complex (Genoa).

Other degradation typologies, including the formation of surface deposits and, in
part, slate exfoliation, are mainly associated with atmospheric pollution and particulate
deposition, in combination with additional environmental factors (Figure 16). In this sense,
the Black Carbon cycles observed during the monitoring campaign represent a significant
indicator of pollutant exposure, particularly in roof areas characterized by limited wash-off
or reduced runoff.

Figure 16. Results of the monitoring activities of PM 10 in the Albergo dei Poveri complex (Genoa).

Similarly, biological colonization and patina formation are favored by conditions of
high humidity, limited ventilation, and persistent shading, frequently observed in north-
oriented roof sections. The environmental monitoring system enables the mapping of these
microclimatic conditions and their comparison with the spatial distribution of biological
growth identified through the artificial intelligence-based analysis model.

Overall, the integration of high-frequency environmental data with the spatial map-
ping of degradation phenomena enables, through the EN-HERITAGE platform, a more
articulated interpretation of degradation processes. This approach provides a knowledge-
based support for the future development of predictive models aimed at analyzing relation-
ships between environmental factors and material response, while explicitly accounting for
differences in scale among the available datasets.

4.2. Discussion Results of the Automatic Degradation Mapping Methodology

The methodology developed for the recognition and mapping of degradation phe-
nomena demonstrated the effectiveness of combining advanced surveying techniques
with artificial intelligence algorithms, establishing itself as an innovative approach to the
planned conservation of historic buildings.
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The implementation of a semantic segmentation algorithm based on a customized
UNet architecture, trained through manual annotations performed using CVAT, enabled
pixel-wise automatic classification of specific degradation phenomena.

The use of PyTorch Lightning facilitated model scalability, while the tile-based ap-
proach allowed efficient management of high-resolution imagery and provided a natural
mechanism for data augmentation through random tiling.

The main challenges addressed concerned the balancing of degradation classes, which
were unevenly distributed within the datasets, and the handling of environmental variabil-
ity in acquisition conditions.

However, some limitations remain: the need for manual annotations in the initial train-
ing phase slows down implementation on new case studies; the dependence on orthophoto
quality requires controlled operating conditions; and the validation of the algorithm for
coexisting or underrepresented degradation types demands additional datasets.

Future developments include expanding the range of detectable classes and integrating
multispectral sensors to enhance the system’s diagnostic capability.

The experimental results confirm the scalability of the proposed approach and its
applicability to different types of surfaces and degradation patterns. The architectural
modularity allows future integration with thermographic data and environmental sensor
information, opening perspectives for the development of integrated automated monitoring
systems. The spatial correlation between thermal anomalies and visible degradation, ob-
tained through orthomosaic overlay, represents a promising element for the development of
advanced diagnostic strategies based on multimodal analysis of historic building surfaces.

4.3. Discussion Results of Platform for Diagnostic in the Conservation and Use of Historic
Buildings Through Digital Twin Technology

The EN-HERITAGE platform represents a significant advancement in the digitalization
of historic heritage, enabling the integrated management of architectural and environmental
information. Information management based on the BIM methodology is consistent with
widely adopted international standards. openBIM export, based on IFC standards certified
by buildingSMART, provides a robust foundation for defining structured information
content, both in terms of data coding and interoperability, as well as data extraction.

The balance between the established capability to produce geometric content and the
need to link it to structured information constitutes the main methodological focus of the
development. The objective is to promote the use of open data structures and to reduce
information fragmentation, thereby improving the overall efficiency of data management.

The adoption of cloud architectures and Web-GIS interfaces facilitates data sharing
and collaboration among different stakeholders. Interactive analysis functions and three-
dimensional visualization, oriented toward a Digital Twin-based approach, enable complex
technical data to be transformed into operational tools supporting the planning of restora-
tion and maintenance interventions.

Future developments include the integration of a document management section,
enabling digital building entities to be linked to technical reports, datasheets, drawings,
records of past interventions, and cadastral information. This approach strengthens the
platform’s role as a collaborative environment, promoting information sharing among
heritage authorities, professionals, and public administrations. The system is also designed
to integrate alerting functions and decision-support tools for conservation planning.

In addition to the technical validation of the platform, the project included a prelimi-
nary phase of stakeholder engagement involving institutional bodies responsible for the
conservation of Genoa’s historic built heritage. Several stakeholders formally expressed
their support through letters of interest submitted during the funding application phase
(POR FESR), confirming both the operational relevance of the proposed tool and their
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willingness to participate in future testing and evaluation activities. The platform’s func-
tionalities are also consistent with the strategies outlined in the Genoa 2050 Action Plan,
particularly about the digitalization of heritage management processes and the integration
of environmental monitoring into conservation planning.

In a subsequent phase, with the Albergo dei Poveri case study representing the most
complete implementation of the EN-HERITAGE workflow, heritage authorities and techni-
cal professionals will be involved in structured testing sessions aimed at assessing usability,
diagnostic effectiveness, and the platform’s contribution to the prioritization of conserva-
tion interventions. This phase will provide a qualitative and operational validation of the
platform’s decision-support capabilities.

In conclusion, the implementation confirmed the replicability of the model in other
contexts, thanks to the use of open-source technologies and the adoption of interoperabil-
ity standards (OGC, IFC). In its prototype version, the EN-HERITAGE platform acts as
an operational Decision Support System (DSS) [27], capable of integrating multi-source
data and providing a comprehensive and up-to-date overview of the conservation state of
historic buildings, supporting strategic planning and effective management of architectural
heritage. The system currently operates as a support platform; however, its architecture
has been designed to enable future extensions, particularly through the progressive in-
clusion of architectural survey products aimed at analyzing the temporal evolution of
degradation phenomena, supporting predictive modeling, what-if simulations, and long-
term evolution analyses.

5. Conclusions
The EN-HERITAGE project demonstrated the technical and operational feasibility of

an integrated approach to the management of historic architectural heritage, based on the
synergy between environmental monitoring technologies, architectural surveying, digital
modeling, and predictive analysis.

The proposed approach combines the use of innovative sensors, satellite observa-
tion technologies, and digital decision-support platforms to enhance the knowledge and
conservation of historic buildings.

The activities carried out highlighted how the integration of satellite data, IoT sensors,
and HBIM models enables the construction of a dynamic and multidimensional understand-
ing of the conservation state of buildings, supporting a multidisciplinary interpretation of
heterogeneous datasets and fostering more efficient and sustainable management practices.
This integration supports a multidisciplinary interpretation of heterogeneous datasets, in
which environmental information and architectural data jointly contribute to the analysis
of degradation processes and conservation needs, fostering more efficient and sustainable
management practices.

The project has revealed a structural challenge: environmental and architectural
datasets display intrinsic spatial and temporal scale mismatches that translate into
broader issues of model interoperability. Their integration requires rigorous multiscale
harmonization and clearly defined methodological protocols. These findings under-
score the need to further develop, validate, and standardize data-fusion and model-
interoperability frameworks capable of managing scale, semantic, and structural discrepan-
cies in a controlled manner.

Beyond the technical results, the project contributed to consolidating a new strategic
vision for cultural heritage conservation, in which digitalization, data analysis, and pre-
dictive modeling become key tools to improve knowledge, reduce maintenance costs, and
increase the resilience of historic assets to climatic and environmental changes.
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Looking ahead, the EN-HERITAGE platform represents a transferable operational
model. However, the scalability of the system is primarily methodological: the model can
be transferred to other roofing systems, whereas its extension to other building elements
is more complex and strongly dependent on data availability and interoperability. Its
modularity, interoperability, and scientific foundation constitute a solid starting point
for further developments aimed at the creation of intelligent, automated systems for
diagnostics, monitoring, and decision support, benefiting public administrations, heritage
authorities, and professionals in the field.
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